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Chemical hardness and the electronic chemical potential 
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Abstract 

The properties of the electronic chemical potential, Jo and the chemical hardness, 7, are summarized. Rules- 
of-thumb are given for predicting the changes in p and 77 when small subsystems are combined to form larger 
systems. In general, the hardness increases when the energy decreases. Covalent bonding and ionic bonding give 
rather different results in both p and 17. 

Introduction 

Density functional theory (DFT) has many important 
applications to chemistry [l]. Some of these depend 
on the use of two important quantities which help to 
characterize any chemical system. There are the elec- 
tronic chemical potential, /.L [2], and the chemical 
hardness, 77 [3]. A chemical system is any collection 
of nuclei and electrons; this may be an atom, a molecule, 
an ion or a radical, or two of these particles interacting 
with each other. The nuclei are held in fixed position, 
and the electrons are at equilibrium. 

The definitions of these quantities are 

p = (aEN), and 277 = @IaN), (1) 

where E is the energy, N the number of electrons and 
21 is the potential due to the fixed nuclei. The name 
electronic potential comes from the thermodynamic 
equation 

c1= w-vws, v (2) 

In the case of the ordinary chemical potential of ther- 
modynamics, N is the number of molecules. 

Both the electronic and the thermodynamic chemical 
potential must be constant everywhere in the system, 
if at equilibrium. In spite of these superficial similarities, 
there is little relationship between the two properties. 
The p of eqn. (1) is not the electronic part of the 
thermodynamic CL. For a molecule, the latter is defined 
as the total energy of the molecule at absolute zero, 
minus the energy of the constituent atoms. It is by far 
the largest part of the thermodynamic chemical po- 
tential. 

The electronic chemical potential is not a simple 
function of the state of the system. Instead it also 
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depends on certain constraints. For example, if a system 
can only lose electrons, a good approximation to p is 
the negative of the ionization potential, -I. If it can 
only gain electrons, the approximation is CL= -A, the 
electron affinity [4]. When no constraint is indicated, 
the approximation p = - (I+A)/2 is used. By Koopman’s 
theorem, I and A can be replaced by - l HoMo and 
- eLUMO, the orbital energies of the two frontier orbitals 
PI- 

Unlike the thermodynamic CL, the electronic p need 
not be a minimum value at equilibrium. The only 
requirement is that it be constant. What the electronic 
p measures is, not stability in the sense of the chemical 
~1, but the tendency of a system to gain or lose electrons. 
A large negative p means a good electron acceptor, 
and a small negative p implies an electron donor. 

Because of this, -p can be called the absolute 
electronegativity. 

-p=xab.=(I+A)/2=Xhi (3) 

Note the close relationship of xabs to the Mulliken 
definition of electronegativity [6]. They are not quite 
the same, though, since Mulliken mean that I and A 
were for suitable valence states, not the ground state. 

There is another good reason to call x the absolute 
electronegativity. If two systems are brought together, 
there will be a flow of electron density from one to 
the other until p is constant throughout the combined 
systems. But this just corresponds to electrons flowing 
from the system of low x to that of high x. In other 
words, the electronegativities are equalized. This equal- 
ization, originally assumed by Sanderson [7], is intuitively 
a very appealing property of electronegativity. 

The hardness measures the rate of change of /L with 
p, the electron density function. A hard system is one 
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where a small change in p produces a large change in 
p. The hardness acts as a resistance to change in the 
electron density, for a given change in k. Hence the 
name hardness, meaning resistance to deformation. DFT 
does not require that 17 be constant everywhere in the 
system. Instead it has local values, +j [S]. The average 
of these local values over the molecule then gives the 
global value, 7. The softness, a, is the reciprocal of 
the hardness. 

The local values are important for determining the 
most reactive sites within the molecule. In general, the 
reactivity is greatest where the local hardness is small, 
or the local softness, 6, is large. The reactivity also 
depends on the wave functions for the HOMO and 
the LUMO. There is complete agreement between 
frontier orbital theory and DFT [9]. 

Another equation from classical thermodynamics is 
of interest in discussing the hardness. 

(apuIahqT, “+ - v2(a.plav), VlN2= VlN2~ (4) 

Here N is the number of molecules, and K is the 
compressibility. Since the mechanical hardness is also 
equal to l/~, times a number density factor, there is 
a nice correspondence between chemical and mechan- 
ical hardness [lo]. 

Since v is held constant in eqn. (l), it follows that 
71 depends on the changes in the kinetic energy and 
the electron-electron repulsion energies with changes 
in N, or in the electron density [8]. The method of 
finite differences gives the approximations (3, 5) 

77 = (I--A)/2 = (%rJMO - EHoh4&2 (5) 

The relationship to the frontier orbital energies is 
particularly useful. It means that in the usual MO 
energy level diagram, the hardness is simply half the 
gap between the HOMO and the LUMO (in filled 
subshell cases). This gap also defines the energy dif- 
ference between the ground state and the lowest excited 
state of the same multiplicity, in simple MO theory. 
A hard molecule has a large energy gap, and a soft 
molecule has a small gap. 

Quantum mechanically speaking, many molecular 
processes occur by a mixing of excited state wave 
functions with ground state wave functions. A small 
energy gap is favorable for easy mixing. Thus we conclude 
that soft molecules are more polarizable than hard 
molecules, in agreement with an earlier definition of 
hardness and softness [ll]. 

We can also conclude that soft molecules are more 
reactive, in general, than hard molecules. For uni- 
molecular reactions, nuclear motions occur easily be- 
cause the electron density can be readily changed. For 
reactions between molecules, easy electron transfer 
occurs between the HOMOs and LUMOs of both 
molecules, if both are soft. 

Fortunately, in recent years many values of I and A 
have been determined [12]. Usually these are reported 
as adiabatic values (if A is positive). Actually what are 
needed are vertical values of I and A, since the nuclei 
should be held fixed in position to agree with eqn. (1). 
The error is usually small for I values, but can be large 
for positive A. Most stable molecules, in fact, have 
negative electron affinities. As measured, these are 
vertical values [13]. 

There is a special problem with both cations and 
anions. These are clearly cases where (I+A)/2 and 
(I--A)/2 are not good approximations. The reason is 
that cations are almost pure electron acceptors and 
anions are electron donors. Special methods have been 
used in these cases [14], but the problems are by no 
means solved. 

For neutral atoms, radicals and molecules, many 
values of I_L and n are now available [12, 13, 151. Their 
usefulness has been amply demonstrated [15, 161. Still, 
it is obvious that chemists can make new molecules 
faster than their I and A values can be measured. 
Therefore procedures for estimating p and 17 for a 
new system will always be needed. 

One method would be to consider a new system as 
made up of two or more simpler systems, where p and 
q are already known. What can be said about the 
expected changes in the electronic chemical potential 
and the hardness as simple systems come together to 
form larger aggregates ? The rest of this article will 
address this question. 

Changes in p 

We will first see what theory has to say about changes 
in the electronic chemical potential, and then compare 
with experimental results, of which there are many. As 
already indicated, a favorable chemical reaction, for 
which hE is a large negative number, can be accom- 
panied by either an increase or a decrease in p without 
violating any basic laws. Still the theory has something 
to say about the changes. 

If two systems C and D, are brought together, as in 
a reaction, they must form a single system with a 
constant value of p. There is a transfer of electrons 
from the less electronegative to the more electronegative 
system. The fractional number of electrons transferred, 
Ahr, is given by [3] 

AN= (Xc-XII) 
2(77c + 714 (6) 

After this initial equalization of electronegativities, there 
are further changes in electron density corresponding 
to covalent and ionic bonding [17]. Equation (6) only 
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gives the initial interaction between the two reactants. 
Nevertheless it seems reasonable to assume that a large 
value of AN means a strong, favorable interaction 
between C and D. This can indicate a strong bond 
between C and D, or a lowering of an activation barrier 
in other cases. Tests of this assumption, using exper- 
imental values of Z and A for the reactants, have given 
strong confirmation [15]. However only reactions in- 
volving similar orbitals can be compared. 

Knowing AN, it is a simple matter to calculate the 
new equilibrium value, ZJ,-~ of the composite system 
PI. 

The new value is an average of the original values, 
weighted by the softness. 

Another result may be calculated for the case where 
unequal numbers of the original reactants are combined. 
An example might be a metal complex. 

M+nL- ML, (f-9 

p= (CL M%4 + nl.LL%.) 
(~M+m) 

(9 

While (7) and (9) seem quite reasonable, they do not 
include the effects of the further changes due to bonding. 

An easy test of the importance of these secondary 
changes are the experimental results for AZ.L in the 
cases where the reactants are the same, as in the 
formation of a homonuclear diatomic molecule. 

2x- x, (10) 

In this reaction AN is zero, and eqn. (7) gives no 
change in CL. 

TABLE 1. Changes in the diierization reaction 2X+X2 

X -A (ev) -h GW vx WI qn WI 

H 7.2 6.7 6.4 8.7 
Li 3.0 2.8 2.4 2.4 
C 6.3 7.7 5.0 4.4 
N 7.3 7.0 7.3 8.9 
0 7.5 6.3 6.1 5.9 
F 10.4 9.6 7.0 6.3 (7.3)” 
Na 2.9 2.7 2.3 2.2 
Al 3.2 3.6 2.8 2.5b 
Si 4.8 4.8 3.4 

cl 8.3 6.9 4.7 

t: c 

(5.2)’ 
K 2.4 2.3 1.9 1.8 
Br 7.6 7.1 4.2 4.0 (4.3). 
I 6.8 6.4 3.7 3.4 (3.8)’ 

Data from ref. 12. ‘Hardness when vertical I and A values are 
used. bRef. 19. %ef. 20. 

Table 1 gives the changes in p and in 7 for a number 
of such reactions. The changes in ZL are not large, in 
general. The electronic chemical potential for the mol- 
ecule is usually somewhat more positive than for the 
constituent atoms. The main exception is C& which 
has a large positive value for its adiabatic electron 
affinity. If the vertical value were used, as the theory 
requires, p would be more positive. 

Apparently pure covalent bonding does not affect 
the electron density greatly, and Z.L is relatively little 
changed. Table 2 gives some results for a number of 
examples where the reactants differ. The comparison 
is between the final value of /I calculated from eqns. 
(7) or (9), and the value of p for the product from 
measured Z and A data. 

The examples are of two kinds. In one group, each 
atom or radical contributes an electron to form a bond. 
In the second group, the bond is a coordinate covalent 
one. In the first group we see that very large differences 
exist between calculated and experimental values of p, 
if the bonding is largely covalent. The experimental 
values are always more positive than those from eqn. 
(7) and (9). 

Paradoxically, the agreement is better for bonds that 
are highly ionic. One would expect that this maximum 
change in electron density would have produced the 
largest changes in Z.L. An explanation for this difference 
between covalent and ionic bonding will be given in 
the next section. 

The examples of coordinate covalent bonding give 
much better agreement between pEalc and pexp. Pre- 
sumably, this is because eqns. (6) and (7) give a much 
better description of the bonding interactions. The best 
agreement is for one or two ligands on the metal atom. 
In cases like Cr(CO), of Fe(CO),, interactions between 
the ligands can become important. 

While Table 2 has only two examples, it offers some 
hope for estimating the effect of ligands on a metal 

TABLE 2. Changes in p for reactions between unlike reactants 

Reaction -c~,.k (ev) -kp (ev) 

Li+F=LiF 4.9 5.9 
Na + Cl = NaCl 4.7 4.8 
Li+H-LiH 4.1 4.1 
c+o=co 6.8 4.1 
H+F==HF 8.7 5.0 
H+OH=H,O 7.4 3.1 
H+CH,=CH, 5.9 2.5 
cHH, + Cl = CH3Cl 6.7 3.8 
Ni + CO = NiCO 4.4 4.4” 
Cr + 2C&, = Cr( C.&I& 2.7 2.6b 
Cr + 6C0 = Cr(CO)6 5.4 3.9’ 
Fe + 5C0 = Fe(CO)s 5.5 4.4’ 

“Theoretical value, ref. 21. bRef. 22. ‘Ref. 23. 
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atom. For example, take the reaction 

Pt + 2P(CH,), - Pt(P(CH& (11) 

-p 5.4 eV 2.8 eV ? 

77 3.3 5.9 ? 

Use of eqn. (9) gives a predicted value of -I_L= 3.8 
eV for Pt(P(CH,),),. This seems a reasonable result, 
since the phosphine ligands, by donating electron density 
to the metal, will make the metal a better electron 
donor. 

The principle of maximum hardness 

There is no theoretical equation to estimate the 
hardness of a composite system from the known hard- 
nesses of its parts. There has been some study of the 
derivative (aT/aN) [24], but this information by itself 
may not be enough. The assumption that qcD is some 
weighted average of qc and qr, also does poorly. 

Indeed, there are reasons to believe that the secondary 
effects of covalent and ionic bonding produce larger 
changes in 7 than in p. 

This can be illustrated, using simple MO theory, and 
the fact that maximum hardness means a maximum 
energy gap between the HOMO and the LUMO. Con- 
sider a movement of nuclei in a system along a reaction 
coordinate, and the resulting orbital interactions. As- 
sume the HOMO and the LUMO play the dominant 
role in these interactions. This is the basic premise of 
frontier orbital theory [25]. Figure l(a) shows the 
interaction of the frontier orbitals. The lower energy 
orbital, the HOMO, goes down in energy. The higher 
energy orbital, the LUMO, goes up in energy, more 
than the HOMO goes down. There is a net energy 
lowering, and also the HOMO-LUMO gap increases. 

Figure l(b) shows the case where the main interaction 
of the HOMO is with another filled orbital of similar 
energy. Now the HOMO goes up in energy, and the 

LUMO\\ LUMOy_ 
\ \ LUMO 

- 
Et LUMO 

HOMO 

(a) (b) 
Fig. 1. Frontier orbital interactions showing energy changes of 
HOMO and LUMO. (a) Energy lowering interaction between 
HOMO and LUMO. (b) Energy raising interaction between 
HOMO and another filled orbital. 

net effect for both orbitals is an increase in energy. 
The LUMO is not involved in the major orbital in- 
teraction. But it will mix with other empty orbitals, 
which will lower its energy, as shown. Since LUMO is 
empty, there is no net energy effect. 

For both Fig. l(a) and (b), we can always reverse 
the reaction coordinate, to raise the energy in (a) and 
lower it in (b). For example, the reverse of Fig. l(a) 
could be the dissociation of an atom or radical from 
the rest of the system. The reverse of Fig. l(b) could 
be the relief of repulsive forces by the separation of 
two parts of the system. To summarize, when the energy 
is decreasing, the HOMO-LUMO gap increases; when 
the energy is increasing, the gap decreases. When the 
energy is at a minimum for the system, the gap will 
be a maximum. 

This is the result for orbital interactions, or covalent 
bonding. What about ionic bonding? Consider a cation 
and an anion approaching each other, with a decrease 
in energy. The HOMO will be an atomic orbital on 
the anion, and the LUMO will be an orbital of the 
cation. As the ions approach, the potential of the cation 
will lower the orbital energy of the anion, and the 
potential of the anion will raise the orbital energy of 
the cation. The HOMO and LUMO will move apart, 
just as in Fig. l(a). 

This result is general, for any collection of charged 
spheres. If the spheres move to raise the potential 
energy, the HOMO and LUMO move towards each 
other in energy. When the energy has a minimum value, 
the HOMO-LUMO gap will be maximum, just as for 
covalent bonding. 

Workers who do MO calculations of molecular struc- 
tures and energies always seem to find that the most 
stable structure has a maximum HOMO-LUMO gap 
[26]. Figure 2 illustrates this by showing an MO energy 
diagram for CH, in its stable tetrahedral form, and in 
an unstable planar form. The smaller gap in the latter 
case arises because the pz orbital of carbon is removed 

E t 

-F- 
I 
I 
I 

*? 
I 
I 

normol CH, plonor CH, 

Fig. 2. The HOMO-LUMO gap, equal to 277, for tetrahedral 
CX& and planar CH+ 
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from bonding, while still occupied. Thus it becomes 
the HOMO. A linear combination of hydrogen 1s orbitals 
is removed from an anti-bonding MO, is lowered in 
energy, and becomes the LUMO. 

The greater stability of the structure with the larger 
gap is usually explained as the result of the second- 
order Jahn-Teller effect [27]. A large gap means more 
difficult mixing of excited states with the ground state, 
as already mentioned. 

There seems to be a rule of nature that molecules 
arrange themselves to be as hard as possible [28]. Parr 
and Chattaraj have recently given a rigorous proof that 
the equilibrium for a chemical system requires a max- 
imum value for the hardness as defined in eqn. (1) 
[29]. However, there are constraints that T, p and 2) 
remain constant. 

The requirement of constant p and 2, is very stringent, 
and it is hard to find examples where it can be satisfied. 
Fortunately, one important case does just this. Start 
with a molecule in its equilibrium geometry, and cal- 
culate the orbital energies at, or near, the Hartree-Fock 
level. Then 17 can be calculated from eqn. (5). Now 
distort the molecule a small amount along directions 
given by the vibrational symmetry coordinates, and 
recalculate the orbital energies and the new 7. It turns 
out that for the non-totally symmetric coordinates, p 
and 2, are constant and 17 is indeed a maximum [30]. 
For the totally symmetric coordinates, p and TJ are not 
constant, and 17 is not a maximum. 

If an incorrect structure is selected, such as planar 
methane, then p and 2, are constant for the asymmetric 
distortions, but 71 is a minimum. Thus there is strong 
support for Parr and Chattaraj’s Principle of Maximum 
Hardness, based on detailed calculations for NH, and 
a& 1301. 

From these two examples, at least, it appears that 
the point group of a molecule is determined by maximum 
hardness, but the exact bond distances and bond angles 
are not. These are determined by the Hellman-Feynman 
electrotation theorem. The repulsive force on each 
nuclei, due to the other nuclei, is just balanced by the 
attractive force due to the electron cloud. 

There are still reasons to believe that increasing 
hardness accompanies the approach of a chemical system 
to its equilibrium state. Consider the overall process 

N(g) + 3Wg) = NH&) (12) 
which is very favorable energetically. We can calculate 
the overall changes in p and 17, using experimental I 
and A values*. We find that p increases from -7.2 
to -2.6 eV, and q increases from 6.4 to 8.2 eV. 

*To find p and v for a mixed system, such as N+3H, take 
the smallest value of Z, and the largest positive value of A (ref. 

4). 

This is not an isolated case. Examination of a large 
number of reactions where a few atoms, or radicals, 
are combined to form a molecule, always seems to give 
the same result for 77. Table 3 gives a number of 
examples. In all cases, 7) increases, the increase being 
larger when the bonding is ionic. Table 1 also shows 
small changes in 77 for pure covalent bonding. Sometimes 
77 actually decreases on forming X, from 2X. However, 
this seems to be an artifact due to using adiabatic, 
rather than vertical, values of A. When the known 
vertical electron affinities are used for halogens, 77 
always increases. 

These results are consistent with Fig. 1, and the 
accompanying discussion. The HOMO-LUMO gap gets 
larger as the energy decreases. An absolute maximum 
may not be reached because the Hellman-Feynman 
theorem interposes a more powerful requirement. The 
small values for the increase in 77 with covalent bonding 
probably result because Fig. l(a) is not a good rep- 
resentation of covalent bonding in many cases. If we 
start with the bond electrons in different orbitals, the 
Figure does not show the fact that the orbital energy 
of the HOMO is increased due to the greater inter- 
electronic repulsion of the two electrons when in the 
same orbital. 

The increase in the HOMO-LUMO gap due to ionic 
bonding is easily calculated, assuming pure ionic bond- 
ing. For NaCl, at the equilibrium distance of 2.36 A, 
the electrostatic contribution to the gap is 6.1 eV. The 
observed value of 3.8 eV reflects the same factors which 
decrease the gap for covalent bonding. 

It is interesting to note that ionic bonding predicts 
no change in /.L. The HOMO is lowered, and the LUMO 
raised by exactly equal amounts. Therefore the midpoint 
is unchanged. For covalent bonding, the LUMO is 
raised more than the HOMO is lowered. Hence there 

TABLE 3. Changes in 7 for reactions between unlike reactants 

Reaction TR’ (ev) 71,~ CeV) 

Na + Cl = NaCl 0.8 4.8 
Li+F=LiF 1.0 5.4 
Li+H=LiH 2.3 3.8 
H+Cl=HCl 4.7 8.0 
c+o=co 4.9 7.9 
H+OH=H,O 5.7 9.5 
CH,+F=CH,F 3.2 9.4 
CHj + Cl = CH$l 3.1 7.5 
CHS+Br=CH3Br 3.2 5.8 
CH,+I=CHJ 3.4 4.7 
Ni + CO = NiCO 3.3 3.6 
Cr + 6C0 = Cr(CO)6 3.1 4.5 
Fe + 2C,H, = Fe(C5H.& 2.8 3.8’ 
Cr + 2C&& = Cr( C&), 3.1 3.3 

“Hardness of reactants. bHardness of products. ‘Ref. 31. 
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References is a small overall positive increase in p, as shown in 
Fig. l(a). This analysis agrees with the results in Tables 
1 and 2. 

Conclusions 

While the foregoing has not provided ways of pre- 
dicting values of p and 77 very accurately, it does provide 
some useful rules-of-thumb for estimation. Restricting 
ourselves to the process of forming a complex system 
from a few simpler ones, an estimate of the new 
electronic chemical potential can be made from eqn. 
(7). 

This will be a fairly good estimate for ionic bonding, 
or for coordinate covalent bonding. However, for co- 
valent bonding where each unit contributes one electron, 
Jo will be much more positive than the predicted value. 

The hardness will increase for the processes con- 
sidered. The increase will be small for covalent bonding 
and large for ionic bonding. 

The rule that the hardness increases as the energy 
decreases, cannot be applied to the formation of a 
giant molecule, or a crystal of a solid. For example, 
consider the reaction 

Li(g) = Li(s) (13) 
For the atom, we have -CL =3.0 eV and 17 52.4 eV. 
For lithium metal, we have - ~=3.1 eV (the work 
function) and 77 = 0.0 eV. The value of 17 equal to zero 
follows because, in a metal, I and A are the same 
number, equal to the work function. 

Thus p is virtually unchanged but n decreases, instead 
of increasing. The reason for this is not hard to find. 
Instead of forming a HOMO and a LUMO, as in Fig. 
l(a), a valence band and a condition band are formed. 
In a metal, the valence band is only partly filled, so 
the highest occupied level is virtually the same energy 
as the lowest empty level. 

Even in an insulator the top of the filled valence 
band will be close to the bottom of the empty conduction 
band. In solid NaCI, for example, the band gap is 8.0 
eV, which makes 7 = 4.0 eV. This may be compared 
to 4.8 eV for diatomic NaCl. In silicon we have 77 = 0.55 
eV (solid) and somewhat greater than 2.6 eV for Si,. 
The larger effect in silicon shows that covalent bonding 
is responsible for the bandwidth. 

9 

10 

11 
12 

13 
14 
15 

16 

17 

18 
19 

20 

21 

22 

23 

24 

25 

26 

27 

28 
29 

30 
31 

R. G. Parr and W. Yang, Density Functional Theory forAtoms 
and Molecules, Oxford Press, New York, 1989. 
R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, J. 
Chem. Phys., 68 (1978) 1801. 
R. G. Parr and R. G. Pearson,J. Am. Chem. Sot., 105 (1983) 
7512. 
J. P. Perdew, R. G. Parr and J. L. Balduz, Phys. Rev. Lett., 
49 (1982) 160. 
R. G. Pearson, Proc. Natl. Acad. Sci. U.S.A., 83 (1986) 8440. 
R. S. Mulliken, J. Chem. Phys., 2 (1934) 762. 
R. T. Sanderson, Science, 114 (1951) 670. 
(a) M. Berkowitz, S. K. Ghosh and R. G. Parr,J. Am. Chem. 
Sot., 107 (1985) 6811; (b) M. Berkowitz and R. G. Parr, J. 
Chem. Phys., 88 (1988) 2554. 
R. G. Parr and W. Yang, J. Am. Chem. Sot., 106 (1986) 
4049. 
W. Yang, R. G. Parr and L. Uytterhoeven, Phys. Chem., 15 
(1987) 191. 
R. G. Pearson, J. Am. Chem. Sot., 85 (1963) 3533. 
S. G. Lias, J. E. Bartness, J. F. Ziebman, J. L. Holmes, R. 
D. Levin and W. G. Mallard, J. Phys. Chem. Re$ Data, I7 
(1988) Suppl. No. 1. 
K. D. Jordan and P. N. Burrow, Chem. Rev., 87 (1987) 557. 
R. G. Pearson, J. Am. Chem. Sot., I10 (1988) 7684. 
(a) R. G. Pearson, Inorg. Chem., 27 (1988) 734; (b) J. Org. 
Chem., 54 (1989) 1523. 
Z. Zhou and R. G. Parr, .I. Am. Chem. Sot., 111 (1989) 7371; 
112 (1990) 5720. 
(a) R. G. Pearson, J. Am. Chem. Sot., 107 (1985) 6801; (b) 
M. Berkowitz, J. Am. Chem. Sot., 109 (1987) 4823. 
J. L. Gazquez and E. Ortiz, J. Chem. Phys., 81 (1984) 2741. 
K. A. Sunil and K. D. Jordan, 1. Phys. Chem., 92 (1988) 
2774. 
M. Nimlos, Z. B. Harding and G. B. Selison, J. Chem. Phys., 
87 (1987) 5116. 
M. Blomberg, U. Brandemark, P. Siegbahn and J. Wennerberg, 
J. Chem. Phys., 88 (1988) 4324. 
P. D. Burrow, A. Modelli, M. Guerra and K. D. Jordan, 
Chem. Phys. Lett., 118 (1985) 328. 
M. Guerra, D. Jones, G. Distefano, A. Foffani and A. Modelli, 
J. Am. Chem. Sot., 110 (1988) 375. 
P. Fuentealba and R. G. Parr, J. Chem. Phys., 93 (1991) 
5559. 
K. Fukui, Theory of Orientation and Stereoreaction, Springer, 
New York, 1975. 
L. S. Bartell, I. Chem. Educ., 4.5 (1968) 754; J. K. Burdett, 
B. K. Coddens and G. V. Kulkarni, Znorg. Chem., 27 (1988) 
3259; T. Ziegler, Znorg. Chem., 2 (1985) 1547. 
R. G. Pearson, Symmetry Rules for Chemical Reactions, 
Wiley-Interscience, New York, 1976. 
R. G. Pearson, J Chem. Educ., 64 (1987) 561. 
R. G. Parr and P. K. Chattaraj,J. Am. Chem. Sot., II3 (1991) 
1854. 
R. G. Pearson and W. E. Palke, J. Phys. Chem., in press. 
A. Modelli, A. Foffani and M. Guerra, Chem. Phys. Lett., 99 
(1983) 58. 


